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Abstract 
 

Software testing is always a trade-off between increased confidence in the correctness of the 

software system under examination and constraints on the amount of time and effort that can be 

spent in testing the software system. As a result, the fault coverage or adequacy of the test suite 

used to test the software system becomes a very important issue as it directly reflects the 

confidence in the correctness of the system under test. Mutation analysis is a well studied 

approach to the evaluation of fault coverage of a given test suite. However, it often becomes 

impractical as it may require to generate a huge number of mutants each of which should then be 

executed against the given test suite. In this paper, we propose a metric approach to the 

evaluation of fault coverage of software testing. This approach is developed based on the finite 

state machine (FSM) model which has been used in the testing of certain software systems such 

as communication protocols and object-oriented programs as well as the testing of sequential 

digital circuits. The attractiveness of this approach is its low computational complexity. It 

calculates the fault coverage of a given test suite by directly analyzing the test suite itself. 

Therefore, it avoids the generation and execution of mutants. This approach has been 

implemented and a number of experiments has been carried out. Some of the experimental 

results are summarized in this paper to show the accuracy of the metric approach compared with 

the mutation analysis technique. 
 
 

1 Introduction 
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Software testing is a critical phase of the software development life cycle. Software testing 

consists of a number of execution scenarios of a software implementation against a selected set 

of test cases called a test suite. A faulty implementation is said to be detected if its execution 

against a test case distinguishes its behavior (or output) from what is expected. 
 

Software testing was originally proposed to detect faults in an implementation [Myer 79]. From 

this fault-detection viewpoint, however, an execution scenario in which no fault is detected 

provides no useful information at all and therefore calls for more execution scenarios. As such, 

the testing process of a software implementation will never be stopped if no fault can be 

detected.  
 

Testing was later proposed to ascertain the correctness of a software implementation in respect 

to its requirement specification [More 90]. The essential idea of this correctness-proving 

viewpoint is that an execution scenario in which no fault is detected ensures that the 

implementation is free of certain faults. Therefore, exhaustive testing, which requires all the 

possible execution scenarios of the implementation to be carried out, is able to prove the 

correctness of the implementation. Apparently, exhaustive testing is often impractical since it 

may involve a huge or even infinite number of execution scenarios to be done. In the more 

practical and so-called fault-based software testing approaches [More 90], a fault model is 

selected which specifies a set of faults of which an implementation should be tested to be free. 

However, it can be still too expensive to prove by testing that an implementation is free of all the 

specified faults as a very large number of test cases may be required. In practice, therefore, a test 

suite which consists of only a relatively small number of test cases will be actually employed to 

test the implementation. As such, software testing is often a trade-off between increased 

confidence in the correctness of the software implementation under examination and constraints 

on the amount of time and effort that can be spent in testing the software implementation. 

Whenever such a trade-off is made, one desires to have a measurement of testing effectiveness in 

terms of the percentage of the specified faults that can be detected. 
 

Mutation analysis is a well studied approach to measuring the fault coverage (also called 

adequacy) of a given test suite [SaSp 90]. It involves the mutation of a program by the 

introduction of a syntactic change in the program. Each of the mutant programs is then executed 

against the test cases in the given test suite. The test suite is said to provide full or complete fault 

coverage if it distinguishes all of the incorrect mutant programs from the original program. 

Moreover, in case that it does not provide full fault coverage, the ratio of the number of 

distinguished mutant programs to the total number of incorrect mutant programs yields a precise 

measure of the fault coverage of the given test suite. Although the mutation analysis technique 

was originally proposed within the framework of white-box testing, its basic principle can be 
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applied to certain black-box testing as well. The drawback of mutation analysis is that the cost 

may prevent us from making an exhaustive analysis. The reason is two-fold. Firstly, the number 

of mutant programs can be, in some cases, very large or even infinite. Secondly, each of the 

mutant programs may have to be executed against a number of different test cases before being 

distinguished from the original program. In practice, therefore, it is often beneficial to test only a 

small, statistically random sampling of mutants against the given test cases [SaSp 90, DDB 91, 

SiLe 89 and MCS 93]. Certainly, the fault coverage obtained in this way is only an 

approximation of the real precise fault coverage of the given test suite. Apparently, the accuracy 

of such an approximated fault coverage relies on the number of randomly sampled mutants. 
 

In this paper, we are going to propose a metric approach to the approximation of the fault 

coverage of a given test suite. The basic idea of this approach is, by analyzing the given test 

suite, to make an estimation on the number of incorrect mutants that can be detected by the test 

suite without the need of generating explicitly the mutants to be executed against the given test 

cases. The approach is to be developed based on the finite state machine (FSM) model. In 

addition to its traditional applications in the development of sequential digital circuit systems 

[Koha 78], the FSM model has been extensively used in recent years in the area of conformance 

testing of communication protocols [PBD 93, SiLe 89, DDB 91, Ural 91, YPB 93a and YPB 

93b]. Currently, it has also attracted much attention in relation with the testing of object-oriented 

software systems [HoSt 93, TuRo 92]. 
 

The rest of the paper is organized as follows. In Section 2, the FSM model is first formally 

introduced and a framework of software testing based on this model is then presented. The 

metric approach to the evaluation of fault coverage of a test suite is developed in Section 3. The 

fault coverage evaluation results for a number of test suites will be summarized in Section 4 to 

show the accuracy of the metric approach. Finally, in Section 5, the conclusion will be given. 
 
 

2 A Framework of Software Testing Based on the FSM Model 
 

We will first introduce the finite state machine model and then present a software testing 

framework based on this model. 
 

2.1 The FSM Model 
 

A finite state machine (FSM), often simply called a machine throughout this paper, is essentially 

an initialized Mealy machine which can be formally defined as follows. 
 

Definition 2.1 (finite state machine) 
A finite state machine is a 7-tuple <S, X, Y, S1, , D>, where 
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S is a set of n states {S1, S2, ..., Sn} with S1  as the initial state; 

X is a finite set of input symbols; 

Y is a finite set of output symbols; 

D is a specification domain which is a subset of S x X; 

 is a transfer function : D --> S; 

 is an output function : D --> Y.             
 

An FSM is said to be completely specified (defined), iff D = S x X. Otherwise it is said to be 

partially or incompletely specified (defined). Since  and  are required to be functions, this 
FSM model is deterministic. That is, for each (Si, x) [ D, there should be exactly one state Sj [ S 

and exactly one output symbol y [ Y such that  (Si, x) = Sj and (Si, x) = y. In this case, we say 

there is a transition leading from state Si to Sj with input x and output y. Such a transition is 

usually written as Si -x/y-> Sj, or as a triplet < Si; x/y; Sj >. Si is said to be the head or starting 

state of the transition, while Sj is said to be the tail or ending state of the transition. An FSM can 

be given in a graph form, with the states and transitions of the FSM represented by the vertices 

and arcs of the graph, respectively. As an example, Figure 1 gives a FSM which is partially 
specified since, at state S3, no transition is specified for input symbol 1. 

 

S1 S2

S4 S3

1/1

2/2
2/2

1/1

2/2
1/2

2/2

S = { S1, S2, S3, S4 } 
X = { 1, 2 } 
Y = { 1, 2 } 
Initial state is S1 

 
Figure 1: An example FSM 

 

The following notations will be used throughout the paper. For a given symbol set Z, Z* is used 

to represent the set of words constructed on Z and "" to represent the empty word, i.e., the word 

consisting of no symbols. Also, the dot "." is used to represent the concatenation operation of 

two words. However, this dot symbol is often omitted when no ambiguity arises. Furthermore, 

|Z| is used to represent the cardinality of Z. 
 

Definition 2.2 (defined input sequence) 
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Let  p = x1x2...xk [ X*. p is called a defined input sequence for state Si [ S, if there exist k states 

Si1, Si2, ..., Sik [ S and an output sequence q = y1y2...yk [ Y* such that there is a sequence of 

transitions 
Si -x1/y1-> Si1 -x2/y2-> Si2 --> ... --> Sik-1 -xk/yk->Sik                       (2-1) 

in the finite state machine.                  
 

We use (Si) to denote the set of all the defined input sequences for state Si. A sequence of 

transitions such as (2-1) can be abbreviated as Si -p/q-> Sik, which, when we do not care about 

the output sequence q, can be further simplified as Si -p-> Sik, with the meaning that the FSM, 

when in state Si and given an input sequence p, will enter state Sik. The definitions of the transfer 

function  and output function  can be naturally extended to apply not only to single inputs, but 

also to sequences of inputs.  
 

Definition 2.3 (extensions of transfer and output functions to input sequences) 

Let  p = x1x2...xk [ (Si) and  be the empty word. Then, 

(Si, ) = Si (Si, p) = ((Si, p’), xk) 

(Si, ) =  (Si, p) = (Si, p’).((Si, p’), xk) 

where  p’ = x1x2...xk-1.                 
 

Definition 2.4 (compatible states and distinct states) 

We say that Si and Sj are compatible states if for  : p [ Si) ( Sj),  s(Si, p) = s(Sj, p). 

Otherwise, they are called distinct  states.                      
 

According to the above definition, if  Si) ( Sj) = , then Si is compatible with Sj. If the 

FSM happens to be completely specified, then the definition of compatible states given above 

reduces to the definition of equivalent states as found in the literature (see for example, [Gill 62, 

Koha 78]). 
 

Definition 2.5 (reduced machine) 

A FSM is said to be reduced if and only if no two states are compatible.           
 

It is easy to verify that the FSM given in Figure 1 is reduced. 
 

Definition 2.6 (reachable state and strongly connected FSM) 
A state Si is said to be reachable (from the initial state S1) if there exists an input sequence p [ 
Si) such that  S1 -p->Si. A machine is said to be initially connected if all the states are 

reachable.                   
 

Apparently, all the states of the FSM in Figure 1 can be reached from the initial state and 

therefore this example FSM is initially connected. 
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Definition 2.7 (mutant machine) 
Let M1 and M2 be two given FSMs. M2 is said to be a mutant machine of M1 if M2 is obtained 

by applying to M1 each of the following four types of operations, in any order, for a certain 

number of times (including zero times): 

Type 1: change the tail state of a transition; 

Type 2: change the output of a transition;  

Type 3: add a transition; and 

Type 4: add an extra state .                 
 

The following corollary follows directly from the above definition. 
 

Corollary 2.8 

A machine is a mutant machine of itself.               
 

2.2 A Testing Framework Based on FSM Model 
 

The FSM model was widely used in traditional hardware testing. In recent years, this model has 

also received much attention in the testing of certain software systems such as communication 

protocols [PBD 93] and object-oriented programs [HoSt 93, TuRo 92]. Testing based on the 

FSM model can be formalized as the problem of testing a FSM implementation[Ural 91]: given a 
FSM representation (specification) of a system (denoted henceforth as MS) and an 

implementation of the system (denoted henceforth as MI), we are required to determine if the 

implementation machine MI conforms to (i.e., is correct with respect to) the specification 

machine MS by testing MI as a black-box. This implies that we should generate from MS a set of 

input sequences, called a test suite, and the corresponding set of expected output sequences such 
that MI conforms to MS if and only if, when the input sequences in the test suite are applied to 

MI, the observed output sequences from MI are the same as the corresponding expected output 

sequences. As already pointed out in the literature [Moor 56, Gill 62, YPB 93a, YPB 93b], this 

problem is not solvable unless it is dealt within a restricted framework. Therefore, some 
assumptions should be made about the specification machine MS and the implementation 

machine MI. 
 

Firstly, the restrictions on the specification machine are summarized in the first assumption. 
 

Assumption 1: (reduced and initially connected specification machine) 
The given specification machine MS is reduced and initially connected.           
 

Secondly, testing based on the FSM model is essentially a mutation testing. Therefore, for the 
given specification machine MS, an implementation machine MI is actually a mutant machine (of 
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MS) obtained from MS by applying each of the four types of operations listed in Definition 2.7 

for a number of times (including zero times). These four types of operations represent the basic 
types of changes that can be made during the implementation of MS. However, it should be 

noted that, in practice, the implementation machine MI is normally completely defined even 

though the given specification machine MS is often only partially specified. Therefore, the 

following assumption is made throughout this paper. 
 

Assumption 2: (completeness of an implementation machine) 
For the given specification machine MS, an implementation machine MI is a completely defined 

mutant machine of MS.                 
 

Thirdly, if the number of changes of Type 4 applied to the given specification machine MS is not 

limited, the number of mutants of MS will be infinite and the problem of testing will become 

intractable. Therefore, in practice, the number of changes of Type 4 is always limited to an upper 

bound. Throughout this paper, we simply do not allow any change of Type 4 as stated in the next 

assumption. 
 

Assumption 3: (limited number of states in an implementation machine) 
For the given specification machine MS, any operation of Type 4 is not allowed and therefore the 

number of states in an implementation machine MI will not exceed that of MS.          
 

We also note here that additional types of changes, such as changes of inputs, changes of head 

states and missing states, may be introduced [MiPa 92]. However, these types of changes are not 

necessary for our discussion as the FSM model is deterministic (Definition 2.1) and 

implementation machines are assumed to be completely defined (Assumption 2). The following 

example explains that the same consequences of a missing state can be achieved by changing the 

tail states of certain transitions (Type 1). Figure 2 (a) shows that, when implementing the FSM 
given in Figure 1, state S4 is not implemented (i.e., missing in the implementation) and the 

transition < S3; 2/2; S4 > is changed to < S3; 2/2; S1 >. However, we can still think that state S4 

is present in the implementation as shown in Figure 2 (b). The reason is that S4 is no longer 

reachable and therefore, during the black-box testing, whether S4 is present or missing in the 

implementation makes no difference. 
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S1 S2

S4 S3

1/1

2/2

2/2

1/1

2/2

1/2

2/2

S1 S2

S3

1/1

2/2
2/2

1/1

2/2

(a) (b)

1/2 1/2

 
Figure 2: missing state 

 
Therefore, as a matter of fact, all the n states S1, S2, ..., Sn of the specification machine MS are 

assumed to be present in an implementation machine MI. However, some of these states may 

become unreachable in MI due to the changes of Type 1 introduced during the implementation. 

Confusion may arise because the same state names S1, S2, ..., Sn are used for both MS and MI. It 

is therefore often helpful, although not necessary, to make things clear by renaming the states S1, 

S2, ..., Sn in MI to I1, I2, ..., In, respectively. Then without loosing generality, let 

MS = < {S1, S2, ..., Sn}, X, Y, S1, SS, DS >, and 

MI = < {I1, I2, ..., In}, X, Y, I1, II, DI >. 
 

Since MI is supposed to be completely defined, we know that DI = {I1, I2, ..., In} x X and 

therefore Ii) = X* and Sj) { Ii), for any Ii and Sj. 
 

Now, we need to introduce some important concepts. The first concept required is the so-called 
conformance relation which essentially defines when MI is a correct implementation of MS.  

This concept is defined through the following two definitions. 
 

Definition 2.9 (equivalence of states in respect to a set of input sequences) 

Let Ii be a state of MI and Sj a state of MS. V is a set of input sequences such that V { Sj). 

Then 
Ii  –V  Sj if     I (Ii, p) = S( Sj, p), for : p [ V.            
 

Definition 2.10 (conformance relation) 
MI conforms to MS, written MI  CONF MS, if and only if  I1  –(S1)  S1, where I1 and S1 are the 

initial states of MI and MS, respectively.               
 

The above defined conformance relation corresponds to the notion of weak conformance [SaDa 

88, SiLe 89 and MiPa 92]. The relationship between the above defined conformance relation and 
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the types of operations listed in Definition 2.7 is established by the following lemma of which 

the proof is similar to that of Lemma A.1 given in the appendix of [YPB 93a]. 
 

Lemma 2.11   
For the specification machine MS and implementation. Then MI conforms to MS if and only if 

there exists a mapping f: {S1, S2, ..., Sn} -> {I1, I2, ..., In}, such that 

(1) f is one-to-one; and 
(2) If Si - x/y -> Sj is in MS, then Ik - x/y -> I¬ is in MI, where Ik = f(Si) and I¬ = f(Sj).         
 

Since the implementation machine MI is treated as a black-box, test cases should be generated 

from the specification machine MS. The following two definitions formally defines the concepts 

of test case and test suite. 
 

Definition 2.12 (test case) 

A test case is a sequence of inputs which should be of finite length and in S1).          

As is clear from the above definition, a test case always starts from the initial state S1 of the 

specification machine MS. Accordingly, each test case should be applied to the implementation 

machine MI when it is in its initial state I1. Therefore, an important assumption in the testing 

based on the FSM model is about the availability of the so-called reliable reset  function and is 

summarized as our fourth (and final) assumption. 
 

Assumption 4: (availability of reliable reset) 

The reliable reset is an operation that, when activated, will bring the implementation from any 

other state back into its initial state. It is assumed to be available in an implementation under 

test.         
 

A special input symbol “r” representing the invocation of the reset operation is added to the 

beginning of each test case. 
 

Definition 2.13 (test suite) 

A test suite is a finite set of test cases.               
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TS = { r.1.1.2,  r.2.1.2.1,  r.2.2.1 }

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S2 S3

S4

1/1 1/1 2/2

2/2 1/1 2/2 1/2

2/2 2/2 1/1

V1 V2 V3 V4

V5 V6 V7 V8 V9

V10 V11 V12 V13

(b)

(a)

 
Figure 3: A test suite generated from the example FSM 

 

Figure 3 (a) lists the test cases of a test suite generated from the machine shown in Figure 1. 

Each of the test cases is prefixed by the reset symbol “r”. Applying the three test cases to the 
initial state S1 results in the three sequences of transitions shown in Figure 3 (b) that will be 

executed. 
 

Definition 2.14 (to pass a test suite) 
Let TS be a test suite and p [ TS be a test case. We say that a given implementation MI passes 

the test case p, written MI pass p, iff I (I1, p) = S( S1, p). Further, we say that MI passes the test 

suite TS, written MI pass TS, iff  MI pass p, for  : p [ TS.            
 

An implementation machine which cannot pass a given test suite is said to fail the test suite or to 

be detected by the test suite. 
 

Let Impl(MS) represent the set of all the implementation machines of MS, i.e., all the completely 

defined mutant machines with same number of states as MS. Then we have the following lemma 

whose validity is obvious (see [Gill 62, SiLe 89]). 
 

Lemma 2.15 (number of implementation machines) 
The number of implementation machines, that is the cardinality of Impl(MS), is given by 

Impl(MS)  = (n Y)n X, where n is the number of states of MS.             

 
 

3 A Metric Approach to the Estimation of Fault Coverage 
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As with other software testing, the evaluation of fault coverage for a given test suite TS is an 

important issue in testing based on the FSM model and has been studied in relation with the 

traditional hardware testing [Koha 78] and, in recent years, in relation with the conformance 

testing of communication protocols [DaSa 88, DDB 91, SiLe 89 and YPB 94]. Methods that 

have been proposed are essentially variations of the mutation analysis technique. For instance, 

instead of using the exhaustive mutation analysis approach, some researchers have introduced a 

number of classes of mutant machines [DaSa 88, DDB 91, SiLe 89 and MCS 93]. The mutant 

machines in a class will contain a certain number of faults resulting from the changes of tail 

states and/or outputs of some transitions. For each class, a limited number of mutant machines 

are randomly generated which are then executed against the given test suite. Apparently, the 

fault coverage evaluated in such a way is an estimation of the real fault coverage of the test suite 

and its accuracy relies on the total number of mutant machines randomly generated and 

executed. In our recent work [YPB 94], a different procedure has been developed which, without 

the need of explicitly generating and then executing a certain (and often large) number of mutant 

machines, can decide if the given test suite provides full fault coverage (i.e., if it can detect all 

the incorrect implementation machines). When the test suite does not provide full fault coverage, 

the proposed approach can derive from the test suite, by analyzing it against the specification 

machine, an incorrect implementation machine which can pass the test suite and therefore allow 

an additional test case to be generated to distinguish this particular implementation machine 

from the specification machine. As such, full fault coverage can be achieved by repeatedly 

applying this procedure. However, this approach does not provide a numeric measure for a test 

suite which does not have full fault coverage. Consequently, it is impossible to use this approach 

to compare the fault coverage of two test suites, if none of them provides full fault coverage. 
 

In this section, we are going to present a metric approach to numerically characterize the fault 

coverage of any test suite. This metric approach avoids the necessity of explicit generation and 

execution of mutant machines representing possible implementations of the given specification 
machine MS. It is developed to have low computational complexity and is therefore quite easy to 

calculate. First of all, let us introduce the following notations: 
 

N1(MS) - the total number of machines in Impl(MS); 

N2(MS) - the number of machines in Impl(MS) which conform to MS; 

N3(MS) - the number of machines in Impl(MS) which do not conform to MS; 

N4(MS, TS) - the number of machines in Impl(MS) which do not conform to MS but can be           

   detected by the given test suite TS; 
N5(MS, TS) - the number of machines in Impl(MS) which do not conform to MS but can pass 

the    given test suite TS. 
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Apparently,  N4(MS, TS) = N3(MS) - N5(MS, TS). The precise definition of fault coverage of a 

given test suite in respect to the given specification machine MS is given as follows. 
 

Definition 3.1 (precise fault coverage) 
The precise fault coverage of a test suite TS in respect to MS, denoted as FCp(MS, TS), is  

FCp(MS, TS) = 
N4(MS, TS)

N 3(MS)
 = 

N 3(MS) - N 5(MS, TS)
N 3(MS)

             

 

The exact value of N3(MS) can be calculated from the given specification machine MS. As 

already given in Lemma 2.14,  

N1(MS) = Impl(MS)  = (n Y)n X
           (3-1) 

 

We can further prove that the following lemma is valid. 
 

Lemma 3.2 (the number of implementation machines which conform to MS) 

N 2(MS) = (n - 1)! (n Y)n X  - DS          (3-2) 

where n is the number of states of MS.               
 

Therefore,  

N3(MS) = N1(MS) - N2(MS) =  (n Y)n X - (n - 1)! (n Y)n X  - DS      (3-3) 
 

Although the exact value of N3(MS) has easily been found, the exact value of N4(MS, TS) or 

N5(MS, TS) is in general too difficult to find without using the exhaustive mutation analysis 

technique. However, as we have already mentioned, the exhaustive analysis technique is often 

not feasible in practice due to the high cost. Therefore, in our approach, we will use an estimated 
value, denoted as N5(MS, TS), of N5(MS, TS). Substituting N5(MS, TS) for N5(MS, TS) in the 

calculation of the fault coverage as defined in Definition 3.1 results in the following estimated 

fault coverage. 
 

Definition 3.3 (estimated fault coverage) 
The estimated fault coverage of a test suite TS in respect to MS, denoted as FCe(MS, TS), is  

FCe(MS, TS) =  
N 3(MS) - N5(MS, TS)

N 3(MS)
               

 

Definition 3.4 (prefix set of a test suite) 

The prefix set AP(TS) of a test suite TS is the set which consists of all the prefixes of all the test 

cases in TS, i.e., 

AP(TS) = { p | p is a prefix of some test case in TS }.             
 

Definition 3.5 (transition covered by TS) 
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A transition < Si; x/y; Sj > in MS is said to be covered by TS, if there are , x [ AP(TS) such 

that S(S1, ) = Si andS(S1, x) = Sj.                   
 

Definition 3.6 (tail state Sj of a transition distinguished from Sk by TS) 

The tail state Sj of a transition < Si; x/y; Sj > in MS is said to be distinguished from another state 

Sk by TS if there are x x[ AP(TS) such that 

S(S1, ) = Si,S(S1, x) = Sj,  S(S1, ) = Sk and S(S(S1, x), ) � S(S(S1, ), ).        
 

We will proceed in two steps to find the estimated value N5(MS, TS). In the first step, we will 

make an estimation, denoted as N6(MS, TS), on the number of implementation machines of MS 

which can pass the given test suite TS. It should be noted that, in general, some of these 
estimated N6(MS, TS) implementation machines conform to the specification machine MS, while 

the others do not. We should therefore in the second step make another estimation, denoted as 
N7(MS, TS), of how many of those N6(MS, TS) implementation machines conform to the 

specification machine MS. Then N5(MS, TS) = N6(MS, TS) - N7(MS, TS) gives us the estimated 

number of implementation machines which do not conform to MS and can pass the given test 

suite. 
 

To find the value of N6(MS, TS), we need to classify the transitions of MS into two classes: the 

first class includes the transitions covered by TS, while the second class consists of the 

transitions not covered by TS. Taking the specification machine given in Figure 1 and the test 

suite TS shown in Figure 3 (a) as an example, we can easily check that, among the seven 

specified transitions in Figure 1, the six transitions listed in Table 1 (a) are covered by the test 

suite TS, while the other transition given in Table 1 (b) is not covered.  
 

For a transition < Si; x/y; Sj > in MS, we use Tail_Dis(< Si; x/y; Sj >, TS) to denote the set of 

states from which the tail state Sj of transition < Si; x/y; Sj > is distinguished. Then,  

Tail_NDis(< Si; x/y; Sj >, TS) = { S1, S2, ..., Sn } - Tail_Dis(< Si; x/y; Sj >, TS)  
 

is the set of states from which the tail state Sj of transition < Si; x/y; Sj > is not distinguished. 
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(a) transitions covered by TS

< S1; 1/1; S2 > < S1; 2/2; S2 > < S2; 1/1; S3 >

< S2; 2/2; S2 > < S3; 2/2; S4 > < S4; 1/2; S4 >

(b) transition not covered by TS

< S1; 1/1; S2 >

Tail_Dis (< S1; 1/1; S2 >, TS) = { S4 } 
Tail_Dis (< S1; 2/2; S2 >, TS) = { S3, S4 } 
Tail_Dis (< S2; 1/1; S3 >, TS) = { S1, S2 } 
Tail_Dis (< S2; 2/2; S2 >, TS) = { S4 } 
Tail_Dis (< S3; 2/2; S4 >, TS) = { S1, S2 } 

Tail_Dis (< S4; 1/2; S4 >, TS) =  

(c) 

Tail_NDis (< S1; 1/1; S2 >, TS) = { S1, S2, S3 } 
Tail_NDis (< S1; 2/2; S2 >, TS) = { S1, S2 } 
Tail_NDis (< S2; 1/1; S3 >, TS) = { S3, S4 } 
Tail_NDis (< S2; 2/2; S2 >, TS) = { S1, S2, S3 } 
Tail_NDis (< S3; 2/2; S4 >, TS) = { S3, S4 } 
Tail_NDis (< S4; 1/2; S4 >, TS) =  { S1, S2, S3, S4 }

(d)

 
Table 1: Intermediate calculation results for the example FSM and TS 

 
For a transition < Si; x/y; Sj > covered by TS, we can easily calculate Tail_Dis(< Si; x/y; Sj >, 

TS) and therefore Tail_NDis(< Si; x/y; Sj >, TS). As an example, let us consider one of the 

covered transition < S1; 2/2; S2 > given in Table 1 (a). As is clear from Figure 3 (b), this 

transition is covered twice by the test suite. The tail state S2 at point V6 is distinguished from 

state S4 at point V8. The same tail state S2 at point V11 is distinguished from state S3 at point V7. 

Therefore, Tail_Dis(< S1; 2/2; S2 >, TS) = { S3, S4 } and Tail_NDis(< S1; 2/2; S2 >, TS) = { S1, 

S2 }. The related results for the other five covered transitions can be found in Table 1 (c) and (d). 

Since a state in Tail_NDis(<Si; x/y; Sj>, TS) is not distinguished from the tail state Sj of <Si; 

x/y; Sj>, changing the tail state Sj of transition < Si; x/y; Sj > to any state in Tail_NDis(< Si; x/y; 

Sj >, TS) will give us an implementation machine which can pass the test suite TS. Therefore, 
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there are |Tail_NDis(< Si; x/y; Sj >, TS)| possible ways to make such a Type 1 change (as 

defined in Definition 2.7). However, we should note that, as transition < Si; x/y; Sj > is covered 

by TS, changing the output symbol “y” to any other output symbol (Type 2 change) will result in 

an implementation machine which is very likely to be detected by TS. Therefore, to guarantee to 

generate an implementation machine which can pass TS, we have only one choice of keeping the 
output “y” of the transition. Consequently, the given transition < Si; x/y; Sj > covered by TS 

gives us |Tail_NDis(< Si; x/y; Sj >, TS)| possible ways of generating an implementation machine 

which can pass the test suite TS. 
 

For a transition < Si; x/y; Sj > not covered by the given test suite TS, its tail state Sj is not 

distinguished by TS from any state. Therefore, we have Tail_NDis(< Si; x/y; Sj >, TS) = { S1, 

S2, ..., Sn }. Furthermore, since the transition is not covered by TS, we can change the output 

symbol “y” to any symbol in Y and still get a mutant machine which can pass TS. Combining 

the possible ways of changing the tail state (Type 1 change) and the possible ways of changing 
the output (Type 2 change), we can immediately conclude that, for the transition < Si; x/y; Sj > 

which is not covered by TS, there are |Tail_NDis(< Si; x/y; Sj >, TS)| x |Y| = n|Y| possible ways 

to generate an implementation machine which can pass the test suite. As a result, the set of all 

the transitions not covered by TS gives us (n. Y)m choices to generate an implementation 

machine which can pass TS (where m is the number of transitions not covered by TS). 
 

As we have assumed in Section 2, an implementation machine should be completely defined. 
Therefore, for the given specification machine MS which is in general partially specified, we 

need to apply the Type 3 operation to add an extra transition for each (Si, x) [ S x X - DS. Since 

the tail state of such an extra transition can be any of the n states S1, S2, ..., Sn and the output 

symbol can be any one in Y, we know that there are a total of (n. Y)n X  - DS possible ways to 
generate an implementation machine by adding n|X| - |DS| extra transitions. 
 

Following from the above discussions, we have 
 

N6(MS, TS) = (nY)n X  - DS  + m  Tail_NDis (< Si; x/y; Sj >, TS) 
< Si; x/y; Sj >

covered

    (3-4) 

where m is the number of transitions not covered by TS.  
 

Lemma 3.7 
The estimated value N6(MS, TS) given in (3-4) is a lower bound on the number of 

implementation machines which can pass the test suite TS.     

          
 

Due to the limited space of this paper, the proof of this lemma is omitted here. 
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Since, in Impl(MS), there are exactly N2(MS) implementation machines which conform to MS, 

we can conclude that there are at most N7(MS, TS) = min(N6(MS, TS), N2(MS)) (i.e., the 

minimum value of the two) implementation machines which conform to MS and are among the 

N6(MS, TS) estimated implementation machines. Therefore,  
 

N5(MS, TS) = N6(MS, TS) - N7(MS, TS) = N6(MS, TS) - min(N6(MS, TS), N2(MS))   (3-5) 
 

gives us a lower bound on the value of N5(MS, TS). Consequently, substituting (3-5) for N5(MS, 

TS) in Definition 3.3 results in the following estimated fault coverage 
 

FCe(MS, TS) = 1 - 
N6(MS, TS) - min(N6(MS, TS), N 2(MS)) 

N 3(MS)
      (3-6) 

 

which is an upper bound of the precise fault coverage FCp(MS, TS) given in Definition 3.1.  
 

Let us continue our example with the specification machine given in Figure 1 and the test suite 
shown in Table 1 (a). For this particular example, |DS| = 7, m = 1, n = 4, |X| = |Y| = 2. Therefore, 

we have N1(MS) = 16777216, N2(MS) = 48, N3(MS) = 16777168, N6(MS, TS) = 18432 and 

finally the estimated fault coverage  FCe(MS, TS) = 99.89042%. 
 

Several properties of FCe(MS, TS) given in (3-6) are summarized in the following theorem. 
 

Theorem 3.5 
(1) FCp(MS, TS) ≤ FCe(MS, TS) ≤ 1; 

(2) FCe(MS, TS) = 1   if   FCp(MS, TS) = 1; 

(3) FCe(MS, TS) = 0   if   FCp(MS, TS) = 0; and 

(4) FCe(MS, TS) ≤ FCe(MS, TS’)  if  AP(TS) { AP(TS’).            
 

It is quite straightforward to prove these properties. However, we feel that the meaning of the 

forth property needs some explanation. We note that AP(TS) is the prefix set of TS and that 

AP(TS) { AP(TS’) implies that TS’ has more or longer test cases than TS. The forth property 

essentially tells us that the estimated fault coverage for TS and TS’ coincide with the intuition 

that TS’ provides better fault coverage than TS. 
 
 

4 Fault Coverage Evaluation Results 
 

The metric fault coverage approach has been implemented under SUN/UNIX. We have done a 

number of experiments with this approach. To show how accurate the metric approach can 

estimate the real precise fault coverage of a test suite, we summarize here the experiment results 
in relation with the specification machine MS given in Figure 1. The following eight test suites 

have been generated from that machine. 
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TS1 =  

TS2 = { r.1 } 

TS3 = { r.1.1.2, r.2.1.2.1 } 

TS4 = { r.1.1.2, r.2.1.2.1, r.2.2.1 } 

TS5 = { r.1.1.2, r.2.1.2.1, r.2.2.1.2 } 

TS6 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2 } 

TS7 = { r.1.1.2, r.2.1.2.1, r.2.2.1.2.2 } 

TS8 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2.2 } 

TS9 = { r.1.1.2.1.1.1, r.1.1.2.1.2.1, r.1.2.1.2.1, r.1.1.2.2.1.1.2.1, r.1.1.2.2.1.2.1,  

    r.1.1.2.2.2.1, r.1.2.2.1, r.2.1.2.1.1, r.2.2.1.2.2 } 
 

Applying the metric approach to these test suites yields the estimated fault coverage listed in the 

second column of Table 2. To assess the accuracy of these estimated fault coverage values, we 

need to compare them with the real precise fault coverage of these test suite. Fortunately, for the 

small specification machine given in Figure 1, we have been able to make an exhaustive 

mutation analysis. We have written a program which generates and executes one by one all the 

(4 x 2)(4 x 2) = 16777216 possible implementation machines against each of the above eight test 

suites. Therefore, we have been able to calculate the real precise fault coverage for these test 

suites and the results are listed in the third column of Table 2. As expected, the estimated fault 

coverage are equal to or slightly over the precise fault coverage. The differences between the 

estimated and precise fault coverage are listed in the forth column of Table 2. Clearly, the 

estimated fault coverage approaches the precise fault coverage when the latter is either very high 

(almost 100%) or relatively low. Figure 4 illustrates the fact that our metric approach slightly 

over estimates the fault coverage of a test suite in some cases. Ideally, we would like to have the 
estimated fault coverage FCe(MS, TS) to be equal to the corresponding precise fault coverage 

FCp(MS, TS) as shown in Figure 4 by the bold dashed line. In reality, FCe(MS, TS) is slightly 

larger than FCp(MS, TS) in certain cases as illustrated by the solid curve. 
 

Actually, we have also applied the metric approach to a number of other more complex 

examples such as the simplified transport protocol [SaBo 84]. However, due to the complexity of 

these examples, we have been unable to make exhaustive mutation analysis to obtain their real 

precise fault coverage. For instance, the simplified transport protocol [SaBo 84] is represented 

by a machine which has 4 states, 10 inputs and 11 outputs and therefore the total number of 

implementation machines is 4440. Such a large number of implementations prevented us from 

making an exhaustive mutation analysis.  As such,  we  are  unable to compare the  estimated  

fault  
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TSi FCe(MS, TSi) FCp(MS, TSi) Deviation

TS1

TS2

TS3

TS4

TS5

TS6

TS7

TS8

TS9

0.00000%

50.00014%

99.34110%

99.89042%

99.94535%

99.94535%

99.97282%

99.89042%

100.00000% 100.00000%

0.00000%

50.00014%

99.25871%

99.66497%

99.66898%

99.88084%

99.77655%

99.92032%

0.00000%

0.00000%

0.08239%

0.22545%

0.22144%

0.06451%

0.16880%

0.05250%

0.00000%
 

Table 2: Fault Coverage 

 

 

FCe(MS, TS)

FCp(MS, TS)

100%

100%0% 50%

50%

Ideal

Real

 
Figure 4: FCe(MS, TS)  vs. FCp(MS, TS) for a given MS 
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coverage for these complex examples with their corresponding precise fault coverage. We are 

currently applying the metric approach to some realistic protocol machines such as the NBS 

Class 4 transport protocol [SiLe 89]. 

 
 
5 Conclusions 
 

The FSM model is an important tool in the study of a number of problems, such as conformance 

testing of communication protocols, object-oriented software testing as well as the development 

of sequential digital circuits. In this paper, we have presented a metric approach to the evaluation 

of fault coverage of a test suite in respect to a system specification given in the form of a finite 

state machine. This approach differs from those methods proposed in [DaSa 88, SiLe 89, DDB 

91 and MCS 93] as it avoids the necessity of generating and executing a (large) number of 

mutant machines. Instead, it evaluates the fault coverage of a given test suite by directly 

analyzing the test suite against the specification machine. It provides a numeric measure for a 

test suite no matter whether the test suite has full fault coverage (i.e., 100%) or not. This feature 

makes the metric approach different from one of our previous work [YPB 94] where a test suite 

is analyzed only to see if it provides full fault coverage or not. As we have seen in Section 4, 

applications of this metric approach to a number of example test suites have shown that the 

estimated fault coverage of a test suite is very close to the real precise fault coverage, especially 

when the test suite approaches full fault coverage. Furthermore, this approach has very low 

computational complexity. Actually, it is not difficult to prove that its complexity is O(L2), 

where L is the size of a test suite in terms of the total number of inputs in the test suite. Other 

related work can be found in [MiPa 92, LoSh 92] where they aimed at generating test suites to 

achieve full fault coverage (or maximal fault coverage as they called) rather than the evaluation 

of fault coverage of a given test suite.  
 

We also note that the metric approach has been developed under certain assumptions 

(Assumptions 1-4 as introduced in Section 2) which are the most relaxed ones compared with 

other work based on the FSM model [SiLe 89, DaSa 88 etc.]. In particular, we have not assumed 

the specification machine to be completely specified. Therefore, the metric approach can be 

applied to partially specification machines. We believe that this is very important for its practical 

applications since the real-world systems, such as protocol machines, are normally partially 

specified. We are currently using the metric approach to evaluate the fault coverage of a number 

of test suites for a subset of the NBS Class 4 transport protocol [SiLe 89, MiPa 92]. 
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As for the future work, we will look for a method, guided by the metric approach for fault 

coverage evaluation, to generate additional test cases to achieve a desired fault coverage if the 

fault coverage of the original given test suite is too low. 
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