
1

A Metric Approach to Measuring Fault Coverage of Software Testing in
Respect to the FSM Model*

Mingyu Yao, Alexandre Petrenko** and Gregor von Bochmann

Département d'informatique et de recherche opérationnelle

Université de Montréal, CP. 6128, Succ. “A”, Montréal (Québec), Canada H3C 3J7

Emails: {yao, petrenko, bochmann}@iro.umontreal.ca

Tel: 1-514-343-6111 ext. 3541

Abstract

Software testing is always a trade-off between increased confidence in the correctness of the

software system under examination and constraints on the amount of time and effort that can be

spent in testing the software system. As a result, the fault coverage or adequacy of the test suite

used to test the software system becomes a very important issue as it directly reflects the

confidence in the correctness of the system under test. Mutation analysis is a well studied

approach to the evaluation of fault coverage of a given test suite. However, it often becomes

impractical as it may require to generate a huge number of mutants each of which should then be

executed against the given test suite. In this paper, we propose a metric approach to the

evaluation of fault coverage of software testing. This approach is developed based on the finite

state machine (FSM) model which has been used in the testing of certain software systems such

as communication protocols and object-oriented programs as well as the testing of sequential

digital circuits. The attractiveness of this approach is its low computational complexity. It

calculates the fault coverage of a given test suite by directly analyzing the test suite itself.

Therefore, it avoids the generation and execution of mutants. This approach has been

implemented and a number of experiments has been carried out. Some of the experimental

results are summarized in this paper to show the accuracy of the metric approach compared with

the mutation analysis technique.

1 Introduction

* This research was supported by a grant from the Canadian Institute for Telecommunications Research under the
 NCE program of the Government of Canada, and the IDACOM-NSERC-CWARC Industrial Research Chair on
 Communication Protocols at University of Montreal.
** On leave from the Institute of Electronics and Computer Science, Riga, Latvia.

2

Software testing is a critical phase of the software development life cycle. Software testing

consists of a number of execution scenarios of a software implementation against a selected set

of test cases called a test suite. A faulty implementation is said to be detected if its execution

against a test case distinguishes its behavior (or output) from what is expected.

Software testing was originally proposed to detect faults in an implementation [Myer 79]. From

this fault-detection viewpoint, however, an execution scenario in which no fault is detected

provides no useful information at all and therefore calls for more execution scenarios. As such,

the testing process of a software implementation will never be stopped if no fault can be

detected.

Testing was later proposed to ascertain the correctness of a software implementation in respect

to its requirement specification [More 90]. The essential idea of this correctness-proving

viewpoint is that an execution scenario in which no fault is detected ensures that the

implementation is free of certain faults. Therefore, exhaustive testing, which requires all the

possible execution scenarios of the implementation to be carried out, is able to prove the

correctness of the implementation. Apparently, exhaustive testing is often impractical since it

may involve a huge or even infinite number of execution scenarios to be done. In the more

practical and so-called fault-based software testing approaches [More 90], a fault model is

selected which specifies a set of faults of which an implementation should be tested to be free.

However, it can be still too expensive to prove by testing that an implementation is free of all the

specified faults as a very large number of test cases may be required. In practice, therefore, a test

suite which consists of only a relatively small number of test cases will be actually employed to

test the implementation. As such, software testing is often a trade-off between increased

confidence in the correctness of the software implementation under examination and constraints

on the amount of time and effort that can be spent in testing the software implementation.

Whenever such a trade-off is made, one desires to have a measurement of testing effectiveness in

terms of the percentage of the specified faults that can be detected.

Mutation analysis is a well studied approach to measuring the fault coverage (also called

adequacy) of a given test suite [SaSp 90]. It involves the mutation of a program by the

introduction of a syntactic change in the program. Each of the mutant programs is then executed

against the test cases in the given test suite. The test suite is said to provide full or complete fault

coverage if it distinguishes all of the incorrect mutant programs from the original program.

Moreover, in case that it does not provide full fault coverage, the ratio of the number of

distinguished mutant programs to the total number of incorrect mutant programs yields a precise

measure of the fault coverage of the given test suite. Although the mutation analysis technique

was originally proposed within the framework of white-box testing, its basic principle can be

3

applied to certain black-box testing as well. The drawback of mutation analysis is that the cost

may prevent us from making an exhaustive analysis. The reason is two-fold. Firstly, the number

of mutant programs can be, in some cases, very large or even infinite. Secondly, each of the

mutant programs may have to be executed against a number of different test cases before being

distinguished from the original program. In practice, therefore, it is often beneficial to test only a

small, statistically random sampling of mutants against the given test cases [SaSp 90, DDB 91,

SiLe 89 and MCS 93]. Certainly, the fault coverage obtained in this way is only an

approximation of the real precise fault coverage of the given test suite. Apparently, the accuracy

of such an approximated fault coverage relies on the number of randomly sampled mutants.

In this paper, we are going to propose a metric approach to the approximation of the fault

coverage of a given test suite. The basic idea of this approach is, by analyzing the given test

suite, to make an estimation on the number of incorrect mutants that can be detected by the test

suite without the need of generating explicitly the mutants to be executed against the given test

cases. The approach is to be developed based on the finite state machine (FSM) model. In

addition to its traditional applications in the development of sequential digital circuit systems

[Koha 78], the FSM model has been extensively used in recent years in the area of conformance

testing of communication protocols [PBD 93, SiLe 89, DDB 91, Ural 91, YPB 93a and YPB

93b]. Currently, it has also attracted much attention in relation with the testing of object-oriented

software systems [HoSt 93, TuRo 92].

The rest of the paper is organized as follows. In Section 2, the FSM model is first formally

introduced and a framework of software testing based on this model is then presented. The

metric approach to the evaluation of fault coverage of a test suite is developed in Section 3. The

fault coverage evaluation results for a number of test suites will be summarized in Section 4 to

show the accuracy of the metric approach. Finally, in Section 5, the conclusion will be given.

2 A Framework of Software Testing Based on the FSM Model

We will first introduce the finite state machine model and then present a software testing

framework based on this model.

2.1 The FSM Model

A finite state machine (FSM), often simply called a machine throughout this paper, is essentially

an initialized Mealy machine which can be formally defined as follows.

Definition 2.1 (finite state machine)
A finite state machine is a 7-tuple <S, X, Y, S1, , D>, where

4

S is a set of n states {S1, S2, ..., Sn} with S1 as the initial state;

X is a finite set of input symbols;

Y is a finite set of output symbols;

D is a specification domain which is a subset of S x X;

 is a transfer function : D --> S;

 is an output function : D --> Y.

An FSM is said to be completely specified (defined), iff D = S x X. Otherwise it is said to be

partially or incompletely specified (defined). Since  and  are required to be functions, this
FSM model is deterministic. That is, for each (Si, x) [D, there should be exactly one state Sj [S

and exactly one output symbol y [Y such that (Si, x) = Sj and (Si, x) = y. In this case, we say

there is a transition leading from state Si to Sj with input x and output y. Such a transition is

usually written as Si -x/y-> Sj, or as a triplet < Si; x/y; Sj >. Si is said to be the head or starting

state of the transition, while Sj is said to be the tail or ending state of the transition. An FSM can

be given in a graph form, with the states and transitions of the FSM represented by the vertices

and arcs of the graph, respectively. As an example, Figure 1 gives a FSM which is partially
specified since, at state S3, no transition is specified for input symbol 1.

S1 S2

S4 S3

1/1

2/2
2/2

1/1

2/2
1/2

2/2

S = { S1, S2, S3, S4 }
X = { 1, 2 }
Y = { 1, 2 }
Initial state is S1

Figure 1: An example FSM

The following notations will be used throughout the paper. For a given symbol set Z, Z* is used

to represent the set of words constructed on Z and "" to represent the empty word, i.e., the word

consisting of no symbols. Also, the dot "." is used to represent the concatenation operation of

two words. However, this dot symbol is often omitted when no ambiguity arises. Furthermore,

|Z| is used to represent the cardinality of Z.

Definition 2.2 (defined input sequence)

5

Let p = x1x2...xk [X*. p is called a defined input sequence for state Si [S, if there exist k states

Si1, Si2, ..., Sik [S and an output sequence q = y1y2...yk [Y* such that there is a sequence of

transitions
Si -x1/y1-> Si1 -x2/y2-> Si2 --> ... --> Sik-1 -xk/yk->Sik (2-1)

in the finite state machine.

We use (Si) to denote the set of all the defined input sequences for state Si. A sequence of

transitions such as (2-1) can be abbreviated as Si -p/q-> Sik, which, when we do not care about

the output sequence q, can be further simplified as Si -p-> Sik, with the meaning that the FSM,

when in state Si and given an input sequence p, will enter state Sik. The definitions of the transfer

function  and output function  can be naturally extended to apply not only to single inputs, but

also to sequences of inputs.

Definition 2.3 (extensions of transfer and output functions to input sequences)

Let p = x1x2...xk [(Si) and  be the empty word. Then,

(Si, ) = Si (Si, p) = ((Si, p’), xk)

(Si, ) =  (Si, p) = (Si, p’).((Si, p’), xk)

where p’ = x1x2...xk-1.

Definition 2.4 (compatible states and distinct states)

We say that Si and Sj are compatible states if for : p [Si) (Sj), s(Si, p) = s(Sj, p).

Otherwise, they are called distinct states.

According to the above definition, if Si) (Sj) = , then Si is compatible with Sj. If the

FSM happens to be completely specified, then the definition of compatible states given above

reduces to the definition of equivalent states as found in the literature (see for example, [Gill 62,

Koha 78]).

Definition 2.5 (reduced machine)

A FSM is said to be reduced if and only if no two states are compatible.

It is easy to verify that the FSM given in Figure 1 is reduced.

Definition 2.6 (reachable state and strongly connected FSM)
A state Si is said to be reachable (from the initial state S1) if there exists an input sequence p [
Si) such that S1 -p->Si. A machine is said to be initially connected if all the states are

reachable.

Apparently, all the states of the FSM in Figure 1 can be reached from the initial state and

therefore this example FSM is initially connected.

6

Definition 2.7 (mutant machine)
Let M1 and M2 be two given FSMs. M2 is said to be a mutant machine of M1 if M2 is obtained

by applying to M1 each of the following four types of operations, in any order, for a certain

number of times (including zero times):

Type 1: change the tail state of a transition;

Type 2: change the output of a transition;

Type 3: add a transition; and

Type 4: add an extra state .

The following corollary follows directly from the above definition.

Corollary 2.8

A machine is a mutant machine of itself.

2.2 A Testing Framework Based on FSM Model

The FSM model was widely used in traditional hardware testing. In recent years, this model has

also received much attention in the testing of certain software systems such as communication

protocols [PBD 93] and object-oriented programs [HoSt 93, TuRo 92]. Testing based on the

FSM model can be formalized as the problem of testing a FSM implementation[Ural 91]: given a
FSM representation (specification) of a system (denoted henceforth as MS) and an

implementation of the system (denoted henceforth as MI), we are required to determine if the

implementation machine MI conforms to (i.e., is correct with respect to) the specification

machine MS by testing MI as a black-box. This implies that we should generate from MS a set of

input sequences, called a test suite, and the corresponding set of expected output sequences such
that MI conforms to MS if and only if, when the input sequences in the test suite are applied to

MI, the observed output sequences from MI are the same as the corresponding expected output

sequences. As already pointed out in the literature [Moor 56, Gill 62, YPB 93a, YPB 93b], this

problem is not solvable unless it is dealt within a restricted framework. Therefore, some
assumptions should be made about the specification machine MS and the implementation

machine MI.

Firstly, the restrictions on the specification machine are summarized in the first assumption.

Assumption 1: (reduced and initially connected specification machine)
The given specification machine MS is reduced and initially connected.

Secondly, testing based on the FSM model is essentially a mutation testing. Therefore, for the
given specification machine MS, an implementation machine MI is actually a mutant machine (of

7

MS) obtained from MS by applying each of the four types of operations listed in Definition 2.7

for a number of times (including zero times). These four types of operations represent the basic
types of changes that can be made during the implementation of MS. However, it should be

noted that, in practice, the implementation machine MI is normally completely defined even

though the given specification machine MS is often only partially specified. Therefore, the

following assumption is made throughout this paper.

Assumption 2: (completeness of an implementation machine)
For the given specification machine MS, an implementation machine MI is a completely defined

mutant machine of MS.

Thirdly, if the number of changes of Type 4 applied to the given specification machine MS is not

limited, the number of mutants of MS will be infinite and the problem of testing will become

intractable. Therefore, in practice, the number of changes of Type 4 is always limited to an upper

bound. Throughout this paper, we simply do not allow any change of Type 4 as stated in the next

assumption.

Assumption 3: (limited number of states in an implementation machine)
For the given specification machine MS, any operation of Type 4 is not allowed and therefore the

number of states in an implementation machine MI will not exceed that of MS.

We also note here that additional types of changes, such as changes of inputs, changes of head

states and missing states, may be introduced [MiPa 92]. However, these types of changes are not

necessary for our discussion as the FSM model is deterministic (Definition 2.1) and

implementation machines are assumed to be completely defined (Assumption 2). The following

example explains that the same consequences of a missing state can be achieved by changing the

tail states of certain transitions (Type 1). Figure 2 (a) shows that, when implementing the FSM
given in Figure 1, state S4 is not implemented (i.e., missing in the implementation) and the

transition < S3; 2/2; S4 > is changed to < S3; 2/2; S1 >. However, we can still think that state S4

is present in the implementation as shown in Figure 2 (b). The reason is that S4 is no longer

reachable and therefore, during the black-box testing, whether S4 is present or missing in the

implementation makes no difference.

8

S1 S2

S4 S3

1/1

2/2

2/2

1/1

2/2

1/2

2/2

S1 S2

S3

1/1

2/2
2/2

1/1

2/2

(a) (b)

1/2 1/2

Figure 2: missing state

Therefore, as a matter of fact, all the n states S1, S2, ..., Sn of the specification machine MS are

assumed to be present in an implementation machine MI. However, some of these states may

become unreachable in MI due to the changes of Type 1 introduced during the implementation.

Confusion may arise because the same state names S1, S2, ..., Sn are used for both MS and MI. It

is therefore often helpful, although not necessary, to make things clear by renaming the states S1,

S2, ..., Sn in MI to I1, I2, ..., In, respectively. Then without loosing generality, let

MS = < {S1, S2, ..., Sn}, X, Y, S1, SS, DS >, and

MI = < {I1, I2, ..., In}, X, Y, I1, II, DI >.

Since MI is supposed to be completely defined, we know that DI = {I1, I2, ..., In} x X and

therefore Ii) = X* and Sj) { Ii), for any Ii and Sj.

Now, we need to introduce some important concepts. The first concept required is the so-called
conformance relation which essentially defines when MI is a correct implementation of MS.

This concept is defined through the following two definitions.

Definition 2.9 (equivalence of states in respect to a set of input sequences)

Let Ii be a state of MI and Sj a state of MS. V is a set of input sequences such that V { Sj).

Then
Ii –V Sj if I (Ii, p) = S(Sj, p), for : p [V.

Definition 2.10 (conformance relation)
MI conforms to MS, written MI CONF MS, if and only if I1 –(S1) S1, where I1 and S1 are the

initial states of MI and MS, respectively.

The above defined conformance relation corresponds to the notion of weak conformance [SaDa

88, SiLe 89 and MiPa 92]. The relationship between the above defined conformance relation and

9

the types of operations listed in Definition 2.7 is established by the following lemma of which

the proof is similar to that of Lemma A.1 given in the appendix of [YPB 93a].

Lemma 2.11
For the specification machine MS and implementation. Then MI conforms to MS if and only if

there exists a mapping f: {S1, S2, ..., Sn} -> {I1, I2, ..., In}, such that

(1) f is one-to-one; and
(2) If Si - x/y -> Sj is in MS, then Ik - x/y -> I¬ is in MI, where Ik = f(Si) and I¬ = f(Sj).

Since the implementation machine MI is treated as a black-box, test cases should be generated

from the specification machine MS. The following two definitions formally defines the concepts

of test case and test suite.

Definition 2.12 (test case)

A test case is a sequence of inputs which should be of finite length and in S1).

As is clear from the above definition, a test case always starts from the initial state S1 of the

specification machine MS. Accordingly, each test case should be applied to the implementation

machine MI when it is in its initial state I1. Therefore, an important assumption in the testing

based on the FSM model is about the availability of the so-called reliable reset function and is

summarized as our fourth (and final) assumption.

Assumption 4: (availability of reliable reset)

The reliable reset is an operation that, when activated, will bring the implementation from any

other state back into its initial state. It is assumed to be available in an implementation under

test.

A special input symbol “r” representing the invocation of the reset operation is added to the

beginning of each test case.

Definition 2.13 (test suite)

A test suite is a finite set of test cases.

10

TS = { r.1.1.2, r.2.1.2.1, r.2.2.1 }

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S2 S3

S4

1/1 1/1 2/2

2/2 1/1 2/2 1/2

2/2 2/2 1/1

V1 V2 V3 V4

V5 V6 V7 V8 V9

V10 V11 V12 V13

(b)

(a)

Figure 3: A test suite generated from the example FSM

Figure 3 (a) lists the test cases of a test suite generated from the machine shown in Figure 1.

Each of the test cases is prefixed by the reset symbol “r”. Applying the three test cases to the
initial state S1 results in the three sequences of transitions shown in Figure 3 (b) that will be

executed.

Definition 2.14 (to pass a test suite)
Let TS be a test suite and p [TS be a test case. We say that a given implementation MI passes

the test case p, written MI pass p, iff I (I1, p) = S(S1, p). Further, we say that MI passes the test

suite TS, written MI pass TS, iff MI pass p, for : p [TS.

An implementation machine which cannot pass a given test suite is said to fail the test suite or to

be detected by the test suite.

Let Impl(MS) represent the set of all the implementation machines of MS, i.e., all the completely

defined mutant machines with same number of states as MS. Then we have the following lemma

whose validity is obvious (see [Gill 62, SiLe 89]).

Lemma 2.15 (number of implementation machines)
The number of implementation machines, that is the cardinality of Impl(MS), is given by

Impl(MS) = (n Y)n X, where n is the number of states of MS.

3 A Metric Approach to the Estimation of Fault Coverage

11

As with other software testing, the evaluation of fault coverage for a given test suite TS is an

important issue in testing based on the FSM model and has been studied in relation with the

traditional hardware testing [Koha 78] and, in recent years, in relation with the conformance

testing of communication protocols [DaSa 88, DDB 91, SiLe 89 and YPB 94]. Methods that

have been proposed are essentially variations of the mutation analysis technique. For instance,

instead of using the exhaustive mutation analysis approach, some researchers have introduced a

number of classes of mutant machines [DaSa 88, DDB 91, SiLe 89 and MCS 93]. The mutant

machines in a class will contain a certain number of faults resulting from the changes of tail

states and/or outputs of some transitions. For each class, a limited number of mutant machines

are randomly generated which are then executed against the given test suite. Apparently, the

fault coverage evaluated in such a way is an estimation of the real fault coverage of the test suite

and its accuracy relies on the total number of mutant machines randomly generated and

executed. In our recent work [YPB 94], a different procedure has been developed which, without

the need of explicitly generating and then executing a certain (and often large) number of mutant

machines, can decide if the given test suite provides full fault coverage (i.e., if it can detect all

the incorrect implementation machines). When the test suite does not provide full fault coverage,

the proposed approach can derive from the test suite, by analyzing it against the specification

machine, an incorrect implementation machine which can pass the test suite and therefore allow

an additional test case to be generated to distinguish this particular implementation machine

from the specification machine. As such, full fault coverage can be achieved by repeatedly

applying this procedure. However, this approach does not provide a numeric measure for a test

suite which does not have full fault coverage. Consequently, it is impossible to use this approach

to compare the fault coverage of two test suites, if none of them provides full fault coverage.

In this section, we are going to present a metric approach to numerically characterize the fault

coverage of any test suite. This metric approach avoids the necessity of explicit generation and

execution of mutant machines representing possible implementations of the given specification
machine MS. It is developed to have low computational complexity and is therefore quite easy to

calculate. First of all, let us introduce the following notations:

N1(MS) - the total number of machines in Impl(MS);

N2(MS) - the number of machines in Impl(MS) which conform to MS;

N3(MS) - the number of machines in Impl(MS) which do not conform to MS;

N4(MS, TS) - the number of machines in Impl(MS) which do not conform to MS but can be

 detected by the given test suite TS;
N5(MS, TS) - the number of machines in Impl(MS) which do not conform to MS but can pass

the given test suite TS.

12

Apparently, N4(MS, TS) = N3(MS) - N5(MS, TS). The precise definition of fault coverage of a

given test suite in respect to the given specification machine MS is given as follows.

Definition 3.1 (precise fault coverage)
The precise fault coverage of a test suite TS in respect to MS, denoted as FCp(MS, TS), is

FCp(MS, TS) =
N4(MS, TS)

N 3(MS)
 =

N 3(MS) - N 5(MS, TS)
N 3(MS)

The exact value of N3(MS) can be calculated from the given specification machine MS. As

already given in Lemma 2.14,

N1(MS) = Impl(MS) = (n Y)n X
 (3-1)

We can further prove that the following lemma is valid.

Lemma 3.2 (the number of implementation machines which conform to MS)

N 2(MS) = (n - 1)! (n Y)n X - DS (3-2)

where n is the number of states of MS.

Therefore,

N3(MS) = N1(MS) - N2(MS) = (n Y)n X - (n - 1)! (n Y)n X - DS (3-3)

Although the exact value of N3(MS) has easily been found, the exact value of N4(MS, TS) or

N5(MS, TS) is in general too difficult to find without using the exhaustive mutation analysis

technique. However, as we have already mentioned, the exhaustive analysis technique is often

not feasible in practice due to the high cost. Therefore, in our approach, we will use an estimated
value, denoted as N5(MS, TS), of N5(MS, TS). Substituting N5(MS, TS) for N5(MS, TS) in the

calculation of the fault coverage as defined in Definition 3.1 results in the following estimated

fault coverage.

Definition 3.3 (estimated fault coverage)
The estimated fault coverage of a test suite TS in respect to MS, denoted as FCe(MS, TS), is

FCe(MS, TS) =
N 3(MS) - N5(MS, TS)

N 3(MS)

Definition 3.4 (prefix set of a test suite)

The prefix set AP(TS) of a test suite TS is the set which consists of all the prefixes of all the test

cases in TS, i.e.,

AP(TS) = { p | p is a prefix of some test case in TS }.

Definition 3.5 (transition covered by TS)

13

A transition < Si; x/y; Sj > in MS is said to be covered by TS, if there are , x [AP(TS) such

that S(S1, ) = Si andS(S1, x) = Sj.

Definition 3.6 (tail state Sj of a transition distinguished from Sk by TS)

The tail state Sj of a transition < Si; x/y; Sj > in MS is said to be distinguished from another state

Sk by TS if there are x x[AP(TS) such that

S(S1, ) = Si,S(S1, x) = Sj, S(S1, ) = Sk and S(S(S1, x), ) � S(S(S1, ), ).

We will proceed in two steps to find the estimated value N5(MS, TS). In the first step, we will

make an estimation, denoted as N6(MS, TS), on the number of implementation machines of MS

which can pass the given test suite TS. It should be noted that, in general, some of these
estimated N6(MS, TS) implementation machines conform to the specification machine MS, while

the others do not. We should therefore in the second step make another estimation, denoted as
N7(MS, TS), of how many of those N6(MS, TS) implementation machines conform to the

specification machine MS. Then N5(MS, TS) = N6(MS, TS) - N7(MS, TS) gives us the estimated

number of implementation machines which do not conform to MS and can pass the given test

suite.

To find the value of N6(MS, TS), we need to classify the transitions of MS into two classes: the

first class includes the transitions covered by TS, while the second class consists of the

transitions not covered by TS. Taking the specification machine given in Figure 1 and the test

suite TS shown in Figure 3 (a) as an example, we can easily check that, among the seven

specified transitions in Figure 1, the six transitions listed in Table 1 (a) are covered by the test

suite TS, while the other transition given in Table 1 (b) is not covered.

For a transition < Si; x/y; Sj > in MS, we use Tail_Dis(< Si; x/y; Sj >, TS) to denote the set of

states from which the tail state Sj of transition < Si; x/y; Sj > is distinguished. Then,

Tail_NDis(< Si; x/y; Sj >, TS) = { S1, S2, ..., Sn } - Tail_Dis(< Si; x/y; Sj >, TS)

is the set of states from which the tail state Sj of transition < Si; x/y; Sj > is not distinguished.

14

(a) transitions covered by TS

< S1; 1/1; S2 > < S1; 2/2; S2 > < S2; 1/1; S3 >

< S2; 2/2; S2 > < S3; 2/2; S4 > < S4; 1/2; S4 >

(b) transition not covered by TS

< S1; 1/1; S2 >

Tail_Dis (< S1; 1/1; S2 >, TS) = { S4 }
Tail_Dis (< S1; 2/2; S2 >, TS) = { S3, S4 }
Tail_Dis (< S2; 1/1; S3 >, TS) = { S1, S2 }
Tail_Dis (< S2; 2/2; S2 >, TS) = { S4 }
Tail_Dis (< S3; 2/2; S4 >, TS) = { S1, S2 }

Tail_Dis (< S4; 1/2; S4 >, TS) = 

(c)

Tail_NDis (< S1; 1/1; S2 >, TS) = { S1, S2, S3 }
Tail_NDis (< S1; 2/2; S2 >, TS) = { S1, S2 }
Tail_NDis (< S2; 1/1; S3 >, TS) = { S3, S4 }
Tail_NDis (< S2; 2/2; S2 >, TS) = { S1, S2, S3 }
Tail_NDis (< S3; 2/2; S4 >, TS) = { S3, S4 }
Tail_NDis (< S4; 1/2; S4 >, TS) = { S1, S2, S3, S4 }

(d)

Table 1: Intermediate calculation results for the example FSM and TS

For a transition < Si; x/y; Sj > covered by TS, we can easily calculate Tail_Dis(< Si; x/y; Sj >,

TS) and therefore Tail_NDis(< Si; x/y; Sj >, TS). As an example, let us consider one of the

covered transition < S1; 2/2; S2 > given in Table 1 (a). As is clear from Figure 3 (b), this

transition is covered twice by the test suite. The tail state S2 at point V6 is distinguished from

state S4 at point V8. The same tail state S2 at point V11 is distinguished from state S3 at point V7.

Therefore, Tail_Dis(< S1; 2/2; S2 >, TS) = { S3, S4 } and Tail_NDis(< S1; 2/2; S2 >, TS) = { S1,

S2 }. The related results for the other five covered transitions can be found in Table 1 (c) and (d).

Since a state in Tail_NDis(<Si; x/y; Sj>, TS) is not distinguished from the tail state Sj of <Si;

x/y; Sj>, changing the tail state Sj of transition < Si; x/y; Sj > to any state in Tail_NDis(< Si; x/y;

Sj >, TS) will give us an implementation machine which can pass the test suite TS. Therefore,

15

there are |Tail_NDis(< Si; x/y; Sj >, TS)| possible ways to make such a Type 1 change (as

defined in Definition 2.7). However, we should note that, as transition < Si; x/y; Sj > is covered

by TS, changing the output symbol “y” to any other output symbol (Type 2 change) will result in

an implementation machine which is very likely to be detected by TS. Therefore, to guarantee to

generate an implementation machine which can pass TS, we have only one choice of keeping the
output “y” of the transition. Consequently, the given transition < Si; x/y; Sj > covered by TS

gives us |Tail_NDis(< Si; x/y; Sj >, TS)| possible ways of generating an implementation machine

which can pass the test suite TS.

For a transition < Si; x/y; Sj > not covered by the given test suite TS, its tail state Sj is not

distinguished by TS from any state. Therefore, we have Tail_NDis(< Si; x/y; Sj >, TS) = { S1,

S2, ..., Sn }. Furthermore, since the transition is not covered by TS, we can change the output

symbol “y” to any symbol in Y and still get a mutant machine which can pass TS. Combining

the possible ways of changing the tail state (Type 1 change) and the possible ways of changing
the output (Type 2 change), we can immediately conclude that, for the transition < Si; x/y; Sj >

which is not covered by TS, there are |Tail_NDis(< Si; x/y; Sj >, TS)| x |Y| = n|Y| possible ways

to generate an implementation machine which can pass the test suite. As a result, the set of all

the transitions not covered by TS gives us (n. Y)m choices to generate an implementation

machine which can pass TS (where m is the number of transitions not covered by TS).

As we have assumed in Section 2, an implementation machine should be completely defined.
Therefore, for the given specification machine MS which is in general partially specified, we

need to apply the Type 3 operation to add an extra transition for each (Si, x) [S x X - DS. Since

the tail state of such an extra transition can be any of the n states S1, S2, ..., Sn and the output

symbol can be any one in Y, we know that there are a total of (n. Y)n X - DS possible ways to
generate an implementation machine by adding n|X| - |DS| extra transitions.

Following from the above discussions, we have

N6(MS, TS) = (nY)n X - DS + m Tail_NDis (< Si; x/y; Sj >, TS)
< Si; x/y; Sj >

covered

 (3-4)

where m is the number of transitions not covered by TS.

Lemma 3.7
The estimated value N6(MS, TS) given in (3-4) is a lower bound on the number of

implementation machines which can pass the test suite TS.

Due to the limited space of this paper, the proof of this lemma is omitted here.

16

Since, in Impl(MS), there are exactly N2(MS) implementation machines which conform to MS,

we can conclude that there are at most N7(MS, TS) = min(N6(MS, TS), N2(MS)) (i.e., the

minimum value of the two) implementation machines which conform to MS and are among the

N6(MS, TS) estimated implementation machines. Therefore,

N5(MS, TS) = N6(MS, TS) - N7(MS, TS) = N6(MS, TS) - min(N6(MS, TS), N2(MS)) (3-5)

gives us a lower bound on the value of N5(MS, TS). Consequently, substituting (3-5) for N5(MS,

TS) in Definition 3.3 results in the following estimated fault coverage

FCe(MS, TS) = 1 -
N6(MS, TS) - min(N6(MS, TS), N 2(MS))

N 3(MS)
 (3-6)

which is an upper bound of the precise fault coverage FCp(MS, TS) given in Definition 3.1.

Let us continue our example with the specification machine given in Figure 1 and the test suite
shown in Table 1 (a). For this particular example, |DS| = 7, m = 1, n = 4, |X| = |Y| = 2. Therefore,

we have N1(MS) = 16777216, N2(MS) = 48, N3(MS) = 16777168, N6(MS, TS) = 18432 and

finally the estimated fault coverage FCe(MS, TS) = 99.89042%.

Several properties of FCe(MS, TS) given in (3-6) are summarized in the following theorem.

Theorem 3.5
(1) FCp(MS, TS) ≤ FCe(MS, TS) ≤ 1;

(2) FCe(MS, TS) = 1 if FCp(MS, TS) = 1;

(3) FCe(MS, TS) = 0 if FCp(MS, TS) = 0; and

(4) FCe(MS, TS) ≤ FCe(MS, TS’) if AP(TS) { AP(TS’).

It is quite straightforward to prove these properties. However, we feel that the meaning of the

forth property needs some explanation. We note that AP(TS) is the prefix set of TS and that

AP(TS) { AP(TS’) implies that TS’ has more or longer test cases than TS. The forth property

essentially tells us that the estimated fault coverage for TS and TS’ coincide with the intuition

that TS’ provides better fault coverage than TS.

4 Fault Coverage Evaluation Results

The metric fault coverage approach has been implemented under SUN/UNIX. We have done a

number of experiments with this approach. To show how accurate the metric approach can

estimate the real precise fault coverage of a test suite, we summarize here the experiment results
in relation with the specification machine MS given in Figure 1. The following eight test suites

have been generated from that machine.

17

TS1 = 

TS2 = { r.1 }

TS3 = { r.1.1.2, r.2.1.2.1 }

TS4 = { r.1.1.2, r.2.1.2.1, r.2.2.1 }

TS5 = { r.1.1.2, r.2.1.2.1, r.2.2.1.2 }

TS6 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2 }

TS7 = { r.1.1.2, r.2.1.2.1, r.2.2.1.2.2 }

TS8 = { r.1.1.2, r.2.1.2.1.1, r.2.2.1.2.2 }

TS9 = { r.1.1.2.1.1.1, r.1.1.2.1.2.1, r.1.2.1.2.1, r.1.1.2.2.1.1.2.1, r.1.1.2.2.1.2.1,

 r.1.1.2.2.2.1, r.1.2.2.1, r.2.1.2.1.1, r.2.2.1.2.2 }

Applying the metric approach to these test suites yields the estimated fault coverage listed in the

second column of Table 2. To assess the accuracy of these estimated fault coverage values, we

need to compare them with the real precise fault coverage of these test suite. Fortunately, for the

small specification machine given in Figure 1, we have been able to make an exhaustive

mutation analysis. We have written a program which generates and executes one by one all the

(4 x 2)(4 x 2) = 16777216 possible implementation machines against each of the above eight test

suites. Therefore, we have been able to calculate the real precise fault coverage for these test

suites and the results are listed in the third column of Table 2. As expected, the estimated fault

coverage are equal to or slightly over the precise fault coverage. The differences between the

estimated and precise fault coverage are listed in the forth column of Table 2. Clearly, the

estimated fault coverage approaches the precise fault coverage when the latter is either very high

(almost 100%) or relatively low. Figure 4 illustrates the fact that our metric approach slightly

over estimates the fault coverage of a test suite in some cases. Ideally, we would like to have the
estimated fault coverage FCe(MS, TS) to be equal to the corresponding precise fault coverage

FCp(MS, TS) as shown in Figure 4 by the bold dashed line. In reality, FCe(MS, TS) is slightly

larger than FCp(MS, TS) in certain cases as illustrated by the solid curve.

Actually, we have also applied the metric approach to a number of other more complex

examples such as the simplified transport protocol [SaBo 84]. However, due to the complexity of

these examples, we have been unable to make exhaustive mutation analysis to obtain their real

precise fault coverage. For instance, the simplified transport protocol [SaBo 84] is represented

by a machine which has 4 states, 10 inputs and 11 outputs and therefore the total number of

implementation machines is 4440. Such a large number of implementations prevented us from

making an exhaustive mutation analysis. As such, we are unable to compare the estimated

fault

18

TSi FCe(MS, TSi) FCp(MS, TSi) Deviation

TS1

TS2

TS3

TS4

TS5

TS6

TS7

TS8

TS9

0.00000%

50.00014%

99.34110%

99.89042%

99.94535%

99.94535%

99.97282%

99.89042%

100.00000% 100.00000%

0.00000%

50.00014%

99.25871%

99.66497%

99.66898%

99.88084%

99.77655%

99.92032%

0.00000%

0.00000%

0.08239%

0.22545%

0.22144%

0.06451%

0.16880%

0.05250%

0.00000%

Table 2: Fault Coverage

FCe(MS, TS)

FCp(MS, TS)

100%

100%0% 50%

50%

Ideal

Real

Figure 4: FCe(MS, TS) vs. FCp(MS, TS) for a given MS

19

coverage for these complex examples with their corresponding precise fault coverage. We are

currently applying the metric approach to some realistic protocol machines such as the NBS

Class 4 transport protocol [SiLe 89].

5 Conclusions

The FSM model is an important tool in the study of a number of problems, such as conformance

testing of communication protocols, object-oriented software testing as well as the development

of sequential digital circuits. In this paper, we have presented a metric approach to the evaluation

of fault coverage of a test suite in respect to a system specification given in the form of a finite

state machine. This approach differs from those methods proposed in [DaSa 88, SiLe 89, DDB

91 and MCS 93] as it avoids the necessity of generating and executing a (large) number of

mutant machines. Instead, it evaluates the fault coverage of a given test suite by directly

analyzing the test suite against the specification machine. It provides a numeric measure for a

test suite no matter whether the test suite has full fault coverage (i.e., 100%) or not. This feature

makes the metric approach different from one of our previous work [YPB 94] where a test suite

is analyzed only to see if it provides full fault coverage or not. As we have seen in Section 4,

applications of this metric approach to a number of example test suites have shown that the

estimated fault coverage of a test suite is very close to the real precise fault coverage, especially

when the test suite approaches full fault coverage. Furthermore, this approach has very low

computational complexity. Actually, it is not difficult to prove that its complexity is O(L2),

where L is the size of a test suite in terms of the total number of inputs in the test suite. Other

related work can be found in [MiPa 92, LoSh 92] where they aimed at generating test suites to

achieve full fault coverage (or maximal fault coverage as they called) rather than the evaluation

of fault coverage of a given test suite.

We also note that the metric approach has been developed under certain assumptions

(Assumptions 1-4 as introduced in Section 2) which are the most relaxed ones compared with

other work based on the FSM model [SiLe 89, DaSa 88 etc.]. In particular, we have not assumed

the specification machine to be completely specified. Therefore, the metric approach can be

applied to partially specification machines. We believe that this is very important for its practical

applications since the real-world systems, such as protocol machines, are normally partially

specified. We are currently using the metric approach to evaluate the fault coverage of a number

of test suites for a subset of the NBS Class 4 transport protocol [SiLe 89, MiPa 92].

20

As for the future work, we will look for a method, guided by the metric approach for fault

coverage evaluation, to generate additional test cases to achieve a desired fault coverage if the

fault coverage of the original given test suite is too low.

References

[DaSa 88] A. Dahbura and K. Sabnani, “Experience in Estimating Fault Coverage of a

Protocol Test”, in Proc. IEEE INFOCOM’88, 1988, pp. 71-79.

[DDB 91] M. Dubuc, R. Dssouli and G.V. Bochmann, “TESTL: A Tool for Incremental Test

 Suite Design Based on Finite State Model”, 4th International Workshop on Protocol

 Test Systems, Holland, November 1991.

[Gill 62] A. Gill, “Introduction to the Theory of Finite-State Machines” McGraw-Hill Book

 Company Inc., 1962, pp. 207.

[HoSt 93] D. Hoffman and P. Strooper, "A Case Study in Class Testing", in Proc.

 CASCON'93, Toronto, Canada, October 24-28, 1993, pp. 472-482.

[Koha 78] Z. Kohavi, “Switching and Finite Automata Theory”, New York, McGraw-Hill,

 1978, pp. 658.

[LoSh 92] F. Lombardi and Y.N. Shen, "Evaluation and Improvement of Fault Coverage of

 Conformance Testing by UIO Sequences", IEEE Trans. Commun., Vol. COM-40,

 8, August, 1992, pp. 1288-1293.

[MCS 93] H. Motteler, A. Chung and D. Sidhu, "Fault Coverage of UIO-based Methods for

 Protocol Testing", Proc. IWPTS, Pau, France, 28-30 September, 1993, pp. 21-33.

[MiPa 92] R.E. Miller and S. Paul, "Structural Analysis of a Protocol Specification and

 Generation of a Maximal Fault Coverage Conformance Test Sequence", submitted

for publication.

[Moor 56] E.F. Moore, “Gedanken-Experiments on Sequential Machines”, Automata Studies,

 Princeton University Press, Princeton, New Jersey, 1956.

[More 90] L.J. Morell, “A Theory of Fault-Based Testing”, IEEE Trans. SE-16, 8, August

 1990, pp. 844-857.

[Myer 79] G.L. Myers, “The Art of Software Testing”, John Wiley, 1979.

[PBD 93] A. Petrenko, G.v. Bochmann and R. Dssouli, "Conformance Relations and Test

 Derivation", Proc. IWPTS, Pau, France, 28-30 September, 1993, pp. 157-178.

[Petr 91] A. Petrenko, “Checking Experiments with Protocol Machines”, Proc. of the 4th Int.

 Workshop on Protocol Test Systems, 1991.

[SaBo 84] B. Sarikaya and G.v. Bochmann, "Synchronization and Specification Issues in

 Protocol Testing", IEEE Trans. Commun., Vol. COM-32, April 1984, pp. 389-395.

21

[SaSp 90] M. Sahinoglu and H. Spafford, “Sequential Statistical Procedures for Approving

Test Sets Using Mutation-Based Software Testing”, SERC-TR-79-P, Software

 Engineering Research Center, Purdue University, September, 1990.

[SiLe 89] D.P. Sidhu and T.K. Leung, “Formal Methods for Protocol Testing: A Detailed

 Study”, IEEE Trans. SE-15, 4, April 1989, pp. 413-425.

[TuRo 92] C.D. Turner and D.J. Robson, "The Testing of Object-Oriented Programs",

 Technical Report TR-13/92, University of Durham, 1992.

[Ural 91] H. Ural, “Formal Methods for Test Sequence Generation”, Computer

 Communications, Vol. 15, No. 5, June 1992, pp. 311-325.

[YPB 93a] M. Yao, A. Petrenko and G.v. Bochmann, "Conformance Testing of Protocol

 Machines without Reset", Department Publication #861, Département

d'informatique et de recherche opérationnelle, Université de Montréal, February

1993, 27 p.

[YPB 93b] M. Yao, A. Petrenko and G.v. Bochmann, "Conformance Testing of Protocol

 Machines without Reset", Proc. of the 13th IFIP Symposium on Protocol

 Specification, Testing and Verification, Liege, Belgium, May 25-28, 1993, pp. 241-

 253.

[YPB 94] M. Yao, A. Petrenko and G.v. Bochmann, “Fault Coverage Analysis in Respect to

 an FSM Specification”, Accepted by IEEE INFOCOM’94 to be held in Toronto,

 Canada, June 12-16, 1994.

